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Abstract: Aging is a complex phenomenon characterized by the progressive loss of tissue and organ
function. The oxidative-stress theory of aging postulates that age-associated functional losses are
due to the accumulation of ROS-induced damage. Liver function impairment and non-alcoholic
fatty liver disease (NAFLD) are common among the elderly. NAFLD can progress to non-alcoholic
steatohepatitis (NASH) and evolve to hepatic cirrhosis or hepatic carcinoma. Oxidative stress,
lipotoxicity, and inflammation play a key role in the progression of NAFLD. A growing body of
evidence supports the therapeutic potential of omega-3 polyunsaturated fatty acids (n-3 PUFA),
mainly docosahaexenoic (DHA) and eicosapentaenoic acid (EPA), on metabolic diseases based on their
antioxidant and anti-inflammatory properties. Here, we performed a systematic review of clinical
trials analyzing the efficacy of n-3 PUFA on both systemic oxidative stress and on NAFLD/NASH
features in adults. As a matter of fact, it remains controversial whether n-3 PUFA are effective to
counteract oxidative stress. On the other hand, data suggest that n-3 PUFA supplementation may
be effective in the early stages of NAFLD, but not in patients with more severe NAFLD or NASH.
Future perspectives and relevant aspects that should be considered when planning new randomized
controlled trials are also discussed.
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1. Introduction

1.1. Aging and Oxidative Stress

Aging is a gradual decline of physiological function with age [1] accompanying the intrinsic,
inevitable and irreversible age-related process of loss of viability and increase in vulnerability in human
beings [2]. Aging is a ubiquitous complex phenomenon as a consequence of the interaction of genetic,
epigenetic, environmental, and stochastic factors throughout life. During this multifactorial process,
the damages occurring in molecules, cells, and tissues gradually accumulate in a timely manner. The
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genetic predisposition and epigenetic modifications afterward have mostly determined the acceleration
or the prevention of aging and its related pathophysiological functions at a whole organism level.
General statistics have shown that as each individual reaches the mid-age of their biological lifespan,
numerous subsequent malign, pathological, and deteriorative consequences start to interfere with the
cardiovascular system, metabolic processes, neurodegenerative disorders, muscle and vision functions,
among others [3–6].

Reactive oxygen species (ROS) are generated within the cells by cellular metabolic activities
such as cell survival, stressor responses, inflammation [7,8], and environmental factors, such as
air pollutants or cigarette smoke [9]. Increased ROS production has been recognized as a critical
contributor to aging since the middle 50′s when D. Harman hypothesized “The free Radical Theory of
Aging” [10] This theory proposed that highly unstable and reactive molecules generated by cellular
metabolism or environmental factors cannot be removed or neutralized, which produce proteins,
lipids, and DNA damage, eventually leading to a defective function of the organelles in aged subjects.
Presently it is known that during the final third of the lifespan, aged animals and humans have lower
adaptive homeostatic capabilities [11,12] mainly caused by an impaired antioxidant defense system,
which in turn promotes the accumulation of oxidative stress-induced molecular damage and triggers
cellular senescence [11]. Oxidative stress can be evaluated by several biomarkers. Hydrogen peroxide,
superoxide radical, oxidized glutathione (GSSG), carbonyls, and nitrotyrosine can be easily measured
from plasma as biomarkers of oxidation [9]. Lipid peroxidation refers to the oxidative degradation
of lipids generally located in biological membranes including phospholipids and cholesterol which
propagates free radicals [13]. Quantifying the secondary breakdown products can indicate in vivo lipid
peroxidation. Several biomarkers are identified for this: 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal
(4-HHE), malondialdehyde (MDA), F2-isoprostanes, α-tocopherol concentration, plasma thiobarbituric
acid-reactive substances (TBARS) level, total reactive antioxidant potential (TRAP), superoxide
dismutase (SOD) activity and low density lipoprotein (LDL) oxidative susceptibility [13]. Plasma
and urine F2-isoprostanes have been identified as excellent and sensitive biomarkers of in vivo lipid
peroxidative damage [13,14]. These compounds are formed in a free radical-dependent manner in
cell membranes at the site of free radical attack from arachidonic acid [14]. Their production has been
reported to be altered in many syndromes putatively associated with oxidative stress [15]. Moreover,
human aging has been characterized as a chronic, low-grade inflammation state, widely named
as “inflammaging” [16]. Thus, chronic cell oxidative stress activates a pro-inflammatory program
leading to acquisition of the senescence-associated secretory phenotype (SASP) characterized by the
increased secretion of pro-inflammatory factors involving the secretion of soluble factors (interleukins,
chemokines and growth factors), degradative enzymes such as matrix metalloproteases (MMPs) and
insoluble proteins/extracellular matrix (ECM) components. Inflammaging, caused by an accumulation
of senescent cells exhibiting SASP in tissues, is considered a risk factor for the development of most
age-related diseases and therefore, for morbidity and mortality in the elderly [17].

1.2. Aging and the Pathophysiology of Non-Alcoholic Fatty Liver Disease (NAFLD)

1.2.1. Concept and Pathogenesis of NAFLD

Liver function and structure impairment is one of the predominant hallmarks of aging [18].
NAFLD is considered to be the consequence of excessive accumulation of triglycerides (TG) in the
cytoplasm of hepatocytes (> 0.5%) without the over-consumption of alcohol in order to compensate
for the increased cellular content of non-esterified fatty acids (free fatty acids; FFAs) [19]. NAFLD
is highly prevalent worldwide [20] and estimated to be globally around 24% according to data
published in 2016 [20]. NAFLD is the most frequent cause of chronic liver disease in western
countries [16,21,22], encompassing a broad spectrum of physio-pathological conditions from simple
steatosis to non-alcoholic steatohepatitis (NASH). According to accepted clinical criteria [23], NASH
should only be established when hepatocyte fat storage is accompanied with lobular inflammation
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and ballooned hepatocytes, where the grade of fibrosis sharpens progressively by stage. If no proper
therapeutic approach is implemented, NASH can ultimately progress to hepatic cirrhosis or hepatic
carcinoma where the scar tissue becomes irreversible, the liver losses its functions partly or completely,
or even develop to hepatocellular carcinoma [24]. NAFLD can trigger or manifest other cardiometabolic
disorders including obesity, disrupted glucose and lipid metabolism, insulin resistance (IR) and type 2
Diabetes Mellitus [25–28]. Aging is also the most common cause for the progression of NAFLD. Indeed
NAFLD is commonly found in the elderly, but the results from the Rotterdam study suggested that the
prevalence of NAFLD decreased with advancing age, suggesting a positive selection of elderly without
NAFLD [29]. Finally, regarding aging and NAFLD, it is important to note that the effect of aging is
different between men and women because women experience many physical changes associated with
menopause during aging. Although controversial results have been found on the direct cause or on
the mechanisms involved, there is increasing evidence indicating that post-menopausal women are
more susceptible than men to develop NAFLD [30]. The study of Klair et al. [31] showed that time
from menopause is directly associated with an increased likelihood of having more severe NAFLD [31].
In support of this hypothesis, studies in rodents suggested that these observed deleterious aging-related
effects on females’ livers might be attributed to impaired lipid metabolism. In fact, in these models,
estrogens increased fatty acid β-oxidation by AMPK activation [32,33]. Taking together these studies,
it could be speculated that in menopausal women, lower serum estrogen levels might constitute a
major cause for impaired lipid accumulation/break down balance and therefore for the promotion
of NAFLD development. However, contrarily, the study of Veronese et al. [34] described that the
years from menopause are not associated with the severity of NAFLD. Moreover, the study found
that adiposity and metabolic syndrome features were associated with higher liver steatosis levels,
concluding that not menopause itself but the menopause-associated increased adiposity (particularly
the excessive accumulation of abdominal adiposity) is the major cause for NAFLD development in
post-menopausal women [34].

However, the pathogenesis of liver disease during aging remains inaccurately defined.
Nonetheless, aging is accompanied by a gradual decrease of hepatic blood flow and liver volume
ranging from 20% to 40% [18,35,36]. In addition to understanding the nature of these changes, few
studies conducted in humans have investigated cholesterol levels. Studies in humans have shown
a decrease in low-density lipoprotein by 35% [37,38] and an increase in biliary cholesterol output,
possibly related to a decrease in cholesterol degradation to bile acid [39].

NAFLD has a complex pathophysiology with multiple manifestations/complications. Liver
steatosis arises as a consequence of an imbalance between hepatic lipid accumulation (from accelerated
FFA influx and de novo lipid synthesis) and hepatic lipid clearance (free fatty acid oxidation (FAO) and
very low-density lipoprotein (VLDL) excretion) [40]. In terms of pathogenesis of NAFLD, a “two hits
hypothesis” was proposed over two decades ago [41] to make an approach to unravel the progression
from NAFLD to NASH. The “first hit” core is peripheral IR as a leading cause accompanying obesity
and metabolic syndrome. In adipose tissue (mainly visceral depot), IR causes an increase in lipolysis,
and consequently the delivery of FFA into the liver increases and TG accumulation occurs. Moreover,
de novo lipogenesis (DNL) plays a pivotal role in FFA synthesis, and the excess of carbohydrates is
converted into fatty acids and esterified into TG [42]. In contrast, the export of FFA and TG is decreased,
while the beta-oxidation of mitochondrial long-chain fatty acids is increased. Indeed, it has been
proposed that hepatic TG accumulation is also probably a consequence of saturation of FFA oxidation
and VLDL) secretion, since both of these pathways are up-regulated rather than decreased in patients
with NAFLD [43]. However, several studies have suggested a protective effect of TG [44,45] and that
an increased level of intrahepatic TG may be a biomarker instead of a cause factor of IR [46].

A “second hit” seems to be needed to develop NASH from NAFLD, such as oxidative stress,
which in terms may explain the progression to liver fibrosis. An imbalanced production of reactive
nitrogen species (RNS) or ROS and the antioxidant molecules of the organism produces oxidative
stress, which can induce hepatocellular injury by the inhibition of the mitochondrial respiratory chain
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enzymes and the inactivation of both glyceraldehyde-3-phosphate dehydrogenase and membrane
sodium channels. Furthermore, ROS cause lipid peroxidation and cytokine production, contributing to
hepatocellular injury and fibrosis [47], and promote the progression from simple steatosis to NASH [48].
Furthermore, ROS induce the directional migration of resident hepatic pro-fibrogenic cells, resulting in
liver fibrosis [49].

In the year 2010, Tilg and Moschen [50] proposed a multiple parallel hits model, suggesting that
many hits may act in parallel favoring the progression from NAFLD to NASH, finally resulting in liver
inflammation and endoplasmic reticulum (ER) stress, and that gut and adipose tissue derived factors
may play a central role (Figure 1).
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Figure 1. Multiple parallel hits NAFLD pathogenesis model. Non-alcoholic fatty liver disease (NAFLD).
Non-alcoholic steatohepatitis (NASH). Endoplasmic reticulum (ER).

Lipotoxicity seems to play a key role in the pathophysiology of NASH. Lipotoxic injury is also
triggered by an excessive FFA flux, especially of saturated fatty acids (SFAs), rather than due to
simple TG accumulation. The excess of FFA facilitates the generation of lipotoxic metabolites (such as
ceramides, diacylglycerol, lysophosphatidyl choline and ROS) contributing also to the development
of liver oxidative stress [43]. Moreover, in NAFLD and aging, increased visceral adipose tissue
is associated with increased infiltration of M1 macrophages, which triggers adipose tissue IR and
inflammation and leads to a disturbed adipokine profile (low adiponectin, an anti-inflammatory
adipokine with beneficial effects in NAFLD; and high levels of pro-inflammatory adipokines such as
leptin, IL-1β, IL-6 and tumor necrosis factor-α; TNF-α), which finally induces liver inflammation and
hepatic IR, as previously stated [51]. Therefore, it is clear that signals and hormones derived from the
adipose tissue beyond toxic lipids might play a central role in NAFLD/NASH.

In the crosstalk between the gut and the liver, the modifications in the microbiota are considered
to have major influence in NASH progression [50]. The human gut is colonized by at least 100 trillion
of microorganisms (gut microbiota) that maintain symbiotic relationships with the host. Several lines
of evidence have demonstrated strong relationships between changes in gut microbiota composition
and the etiology of obesity, inflammation, type 2 diabetes and NAFLD [52]. A major mechanism
linking gut dysbiosis with the progression of chronic liver diseases is the translocation of bacteria
or bacterial products into the portal circulation [53]. The gut bacteria may contribute to NAFLD by
producing bacteria-derived endotoxins (lipopolysaccharide, LPS). It has been shown that feeding



Nutrients 2019, 11, 872 5 of 37

with a high-fat or a high-carbohydrate diet causes elevated levels of circulating endotoxin [54], which
may also affect the accumulation of hepatic fat [50]. The gut microbiota also produces microbial
metabolites such as short-chain fatty acids (SCFAs) which play a critical role in regulating host energy
harvest [55]. SCFAs have anti-inflammatory properties, can directly act as lipid precursors in the
liver, and may act by interacting with the G protein– coupled receptor 43 (Gpr43) [56]. An altered
microbiota also inhibits the synthesis of fasting-induced adipocyte factor (FIAF; also known as
angiopoietin-related protein 4, ANGPTL4), which has been associated with a higher accumulation of
lipids in the liver [53]. Moreover, the endogenous ethanol produced by the intestinal microbiota favors
the transport of endotoxins in the gut vessels [57]. It has been observed that patients with NASH
have higher abundance of ethanol-producing bacteria in their gut microbiome, suggesting a potential
involvement of alcohol-producing gut microbiota in NASH progression [58]. Ethanol and its derived
compounds (acetaldehyde and acetate) [59] induce the formation of ROS by hepatic stellate cells and
Kupffer cells [60]. Jones and Neish [61] suggested that the interaction between the gut epithelia and
some groups of enteric commensal bacteria induces rapid generation of ROS within host cells [61],
and together with LPS, ROS promote increased TLR4 gene expression [62]. Recent data have shown
that the gut microbiota regulate the metabolism of the major intracellular antioxidant, glutathione
(GSH), in the host organism [63]. Thus, lower levels of GSH can contribute to oxidative stress [64,65].

In conclusion, this multiple parallel hits model reflects more deeply the phenomena that contribute
to the pathogenesis of NAFLD/NASH than the previous two hits model. Moreover, aging is an important
determinant for NAFLD/NASH development. All the previously described multifactorial mechanisms
involved in the pathogenesis of NAFLD/NASH (IR, increased visceral adiposity, inflammation,
oxidative and ER stress, dysbiosis) are accentuated during aging, which could be underlying the higher
prevalence of these pathologies among elderly. Thus, several therapeutic approaches can be merged
from targeting these key factors for the promotion of liver health in the context of aging.

1.2.2. Genetic Variances Susceptibility for NASH and Oxidative Stress

NAFLD is also considered as a poligenic disease [66] where different polymorphisms can affect
the three main pathways: genes that participate in TG accumulation, in inflammatory processes
and that are part of the oxidative-stress pathway. (i) Genes that participate in the accumulation
of triglycerides such as: patatin-like phospholipase domain containing protein 3 (PNPLA3) and
transmembrane 6 superfamily member 2 (TM6SF2) [67]. PNPLA3 rs738409 polymorphism has been
recently associated through a meta-analysis with NAFLD susceptibility and also to other aggressive
diseases [68]. In addition, Li et al. [69] have found a significant association of TM6SF2 rs58542926
polymorphism and the risk of NAFLD. (ii) Genes involved in the inflammatory processes: TNF, IL-6
and toll-like receptor 4 (TLR4) [66]. TNF-238 [70,71] and TNF-308 [72] are the main polymorphisms of
TNF related with the disease, although their roles are still under consideration. -174 polymorphism
in the IL-6 gene promoter region has been shown to be more prevalent in NAFLD patients than
in healthy subjects [71,72]. In the case of TLR4, -299 polymorphism seems to be preventive [73],
although a polymorphism (-159) in its co-receptor CD14 has been associated with an increased risk of
NAFLD [74]. (iii) Genes that are part of the oxidative-stress pathways: SOD2 gene (mitochondrial
enzyme manganese-dependent superoxide dismutase (MnSOD) is encoded by this gene), uncoupling
protein 3 (UCP3) and glutamate—cystein ligase (GCLC) [66]. C47T polymorphism in the SOD2 gene
has been associated with NASH in obese children [75] and with NAFLD fibrosis severity [76]. A UCP3
single nucleotide polymorphism (SNP) has been related with NAFLD in Chinese children [77] and in
obese adults [78]. Furthermore, the genetic variant -129C/T in the GCLC gene has been associated with
NASH [79,80].

1.2.3. The Diagnosis of NAFLD

The diagnosis of NAFLD is often based on the following criteria: non-alcoholic, detection of
steatosis either by imaging or by histology and an appropriate exclusion of other liver diseases [27,81–83].
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Daily alcohol consumption approximately below 30 g in men and 20 g in women can be included in
the target population according to conducted epidemiological studies [23], but no consensus of the
exact quantity has been reached. Ultrasonography (US) and magnetic resonance imaging (MRI) are
currently the most employed methods to diagnose NAFLD, since they are non-invasive, comparatively
low cost, and commonly available, with a sensitivity of 89% and 77%, and a specificity of 93% and
89% in diagnosing liver steatosis and liver steatohepatitis respectively [84,85]. However, the US is
subjective and operator-dependent and not that good at assessing liver steatosis, while the MRI is
more objective and better at quantifying steatosis [23]. Liver biopsy is considered to be the “gold”
standard for identifying steatohepatitis (NASH) by correlating histological features [86]. Although
liver biopsy is the definitive tool to diagnose NASH, it lacks availability being an expensive and
invasive procedure, and it would not be necessary to apply since the prevalence of liver steatosis is
much more frequent than NASH. Recently, several non-invasive, simple diagnostic indices have shown
their utility in diagnosing NAFLD and NASH, since they are calculated based on anthropometric data
and biochemical analysis (Table 1). These indices include: the Fatty liver index (FLI) [87,88], the hepatic
steatosis index (HSI) [89] and the ZJU (Zhejiang University) index [90]. Other non-invasive scores
are the NAFLD fibrosis score [91–93] the BARD score [91] and the FIB-4 index [94]. More research is
needed to identify and confirm truly independent and quantitative markers of steatosis.
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Table 1. NAFLD index and their hallmarks.

NAFLD Index Predictors Hallmarks Interpretation

Fatty liver index (FLI)

Fatty Liver Index (FLI) = ey / (1 + ey) × 100.
Where y = 0.953 × ln(triglycerides, mg/dL)
+ 0.139 × BMI, kg/m2 + 0.718 × ln (GGT,

U/L) + 0.053 ×WC, cm − 15.745) [95]

Identified NAFLD and the optimal
cut-off point with accuracy.

FLI < 30, no FL (with a negative likelihood ratio of up to 0.2);
60 < FLI < 30, Inconclusive

FLI ≥ 60, FL present (with a likelihood ratio starting from 4.3)

Lipid accumulation product
(LAP)

LAP for men = (WC [cm]–65) × (TG
concentration [mmol/L])

LAP for women = (WC [cm] − 58) × (TG
concentration [mmol/L]) [96]

Associated with the presence and
severity of NAFLD, among young
and aged population [97,98]. NOT
able to predict liver fat content [99].

The optimal cut-off value for LAP was 31.6 with sensitivity of
88% (95% CI, 77–96%), specificity of 82% (95% CI, 76–87%) for

males and with a sensitivity of 66% (95% CI, 52–78%),
specificity of 93% (95% CI, 88–96%) for females.

Hepatic steatosis index (HSI)
Hepatic steatosis index (HSI) = 8 ×

(ALT/AST ratio) + BMI (+2, if female; +2, if
diabetes mellitus) [89].

A simple, efficient screening tool
for NAFLD, used for selecting

individuals for liver
ultrasonography [89].

At values of < 30.0 or > 36.0, HSI ruled out NAFLD with a
sensitivity of 93.1%, or detected NAFLD with a specificity of

92.4%, respectively [89].

The ZJU (Zhejiang University)
index

ZJU index = BMI (Kg/m2) + FPG (mmol/L)
+ TG (mmol/L) + 3 × ALT (IU/L)/AST

(IU/L) ratio (+2, if female) [90].

Confirmed to have significance in
terms of diagnosing NAFLD [90].

At a value of <32.0, the ZJU index could rule out NAFLD
with a sensitivity of 92.2%, and at a value of >38.0, the ZJU
index could detect NAFLD with a specificity of 93.4% [90].

NAFLD fibrosis score

NAFLD Score = −1.675 + (0.037 × age
[years]) + (0.094 × BMI [kg/m2]) + (1.13 ×
IFG/diabetes [yes = 1, no = 0]) + (0.99 ×
AST/ALT ratio) − (0.013 × platelet count
[×109/L]) − (0.66 × albumin [g/dL]) [92]

Identifies patients without severe
fibrosis, comparatively more

difficult to estimate [91].

Low cut-off score (−1.455): advanced fibrosis ruled out with
high accuracy (negative predictive value of 93% and 88% in
the estimation and validation groups, respectively). High

cut-off score (0.676), advanced fibrosis diagnosed with high
accuracy (positive predictive value of 90% and 82% in the

estimation and validation groups, respectively) [92].

BARD score Based on AST/ALT ratio, presence of
diabetes and BMI [100].

Identifies patients without severe
fibrosis, but easier to estimate and

does not have indeterminate
results [91].

BMI ≥28 = 1 point, AAR of ≥0.8 = 2 points, DM = 1 point
A score of 2–4 was associated with an OR for advanced

fibrosis of 17 (confidence interval 9.2 to 31.9) and a negative
predictive value of 96% [100].

FIB-4 index FIB-4 Score = age ([yr] × AST [U/L])/((PLT
[109/L]) × (ALT [U/L])1/2) [101].

In patients <35 or >65 years old,
the score has been shown to be less

reliable [94,101].

At a cut-off of <1.45 in the validation set, the negative
predictive value to exclude advanced fibrosis (stage 4–6) was

90% with a sensitivity of 70%. A cut-off of >3.25 had a
positive predictive value of 65% and a specificity of 97%.

Using these cut-offs, 87% of the 198 patients with FIB-4 values
outside 1.45–3.25 would be correctly classified [101].

Abbreviations: AAR, AST/ALT ratio; BMI, body mass index; DM, diabetes mellitus; FPG, fasting plasma glucose; TG, triglycerides; ALT, alanine transaminase; AST, aspartate transaminase;
GGT, gamma-glutamyl transpeptidase; OR, odd ratio; WC, waist circumference.
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2. Nutrients, Oxidative Stress and NAFLD/NASH

Considering the role of oxidative stress in the progression of aging and especially in the risk of
developing aging-related pathologies, it is important for researchers to look for potential therapeutic
targets that might delay the progression of oxidative damage in the early stages of aging. For this reason,
increasing attention has been paid to the role that certain dietary nutrients may play in oxidative stress.
Oxidative stress has been identified as a key factor associating obesity with related disorders such as
cardiovascular diseases or type 2 diabetes mellitus, which can be triggered by a high-level consumption
of several macronutrients: glucose, SFAs or omega-6 polyunsaturated fatty acids (n-6 PUFA) inducing
inflammation through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) mediated
pathways [102]. Contrariwise a large body of research has investigated the potential beneficial effect of
dietary antioxidants such as vitamin A, vitamin E, vitamin C, selenium, α-lipoic acid, resveratrol and
other polyphenols in the prevention of metabolic and age-related chronic diseases [103–105].

According to previous studies, omega-3 polyunsaturated fatty acids (n-3 PUFA) may exert a
protective effect on cardiovascular and metabolic diseases, which have been related to its antioxidant
and anti-inflammatory properties [106–108]. Richard et al. [109] reported that n-3 PUFA may indirectly
act as antioxidants by lowering ROS production and superoxide scavenging. Petinelli et al. [110]
found that the liver of NAFLD patients exhibits a marked enhancement in n-6 PUFA/n-3 PUFA ratio,
which may favor lipid synthesis over oxidation and secretion, leading to steatosis. In this context, n-3
PUFA have been involved in the regulation of the metabolic switch from anabolism (lipogenesis) to
catabolism (FAO) by inhibiting Sterol regulatory element-binding protein 1 (SREBP1c) and activating
peroxisome proliferator-activated receptor alpha (PPARα), a positive regulator of FAO [110–112].
However, it remains the theoretical concern that the many double bonds of eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) may lead to an increased unsaturation index once they are
incorporated into the membranes and lipoproteins [113]. This situation could induce higher lipid
peroxidation based on the premise that fatty acid oxidizability might be directly associated with the
number of double bonds in the fatty acid chain [114]. However, some in vitro and in vivo studies
have challenged these theoretical considerations. Indeed, n-3 PUFA may also alleviate IR, lipid
accumulation, pro-inflammatory actions, and ROS production, and promote the FAO in NAFLD,
in part by modulating the production of bioactive adipokines (leptin and adiponectin) that control the
crosstalk between adipose tissue and key metabolic organs such as the liver and muscle [115].

On the other hand, understanding that nutrient intake can also promote or reduce the
pro-inflammatory response and oxidative stress occurring in NAFLD and NASH is of crucial importance
in order to prevent the development and/or severity of these pathologies [116]. Few studies have
suggested that over-consumption of carbohydrate-enriched drinks, which contain elevated levels of
fructose increased SREBP1c and downstream fatty acid synthesis genes, resulting in reduced liver
insulin signaling [117]. Meanwhile, fructose promotes inflammation by modelling inflammatory
genes [118–120], and down-regulates the hepatic mitochondria beta-oxidation [121]. Overloaded iron
levels and decreased copper level have been suggested to play a role in NASH development, inducing
inflammation and oxidative stress through several cellular mechanisms [122–124]. Increased dietary
intake of SFAs, cholesterol and trans-fat induces DNL leading to ER stress and apoptosis [125]. These
nutrients are mostly in favor of the NASH development since they trigger inflammation and ER stress.

In conclusion, increased fructose, SFA, cholesterol, trans-fat, iron intake and decreased copper
intake can induce oxidative stress in NAFLD; on the contrary, nutrient intake such as n-3 PUFA,
vitamin A, vitamin E, vitamin C, selenium, α-lipoic acid, resveratrol, and other polyphenols may
ameliorate oxidative stress and NAFLD. To our knowledge, there are not systematic reviews analyzing
the main outcomes of randomized controlled trials aimed to characterize the actions of n-3 PUFA
supplementation on oxidative-stress biomarkers.

On the other hand, although several trials and recent meta-analysis have suggested that n-3 PUFA
may have beneficial effects on NAFLD patients, the outcomes on different biomarkers of fatty liver
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disease (AST, ALT, GGT or liver fat content by US) are sometimes heterogeneous [126–130]. Moreover,
recent randomized controlled trials have produced conflicting data in NAFLD/NASH patients [131].

Based on these premises, the aims of the current study are to perform a systematic review of the
current clinical trials analyzing the potential beneficial effects of n-3 PUFA supplementation on systemic
oxidative stress as well as their efficacy in the treatment of NAFLD and NASH in adult patients.

3. n-3 PUFA in Oxidative Stress and NAFLD/NASH

3.1. n-3 PUFA (Dietary Sources and Metabolism)

α-linolenic acid (ALA) and linoleic acid (LA) are essential PUFA obtained from diet, since they
cannot be synthesized in humans [26,27]. LA is the major n-6 PUFA, and ALA is an n-3 PUFA [90].
n-6 PUFA can be obtained mainly from poultry, eggs, nuts, sesame seeds, dairy products, and lower
amounts in grains and seeds [26,27]. ALA (18:3 n-3) can be found in flaxseed, canola and soybean
oils, green leafy vegetables and walnuts [132]. In the body, LA is metabolized to arachidonic acid (AA;
20:4 n-6), and ALA is metabolized to EPA (20:5 n-3) and DHA (22:6 n-3) [102]. The conversion of ALA
to EPA is limited; however, some studies show that ALA can be converted to EPA when adequate
intake of ALA is ensured and low intake of n-6 PUFA happens. Moreover, in vivo the conversion
of ALA to DHA has been reported to be even more limited [133]. Regular intake of EPA and DHA
from our diet is needed to guarantee an optimal supply of n−3 PUFA. EPA and DHA are acquired
mainly from marine products: fatty fishes such as salmon, tuna, and sardines, which store fatty acids
throughout their body, and lean fishes such as cod and hake that store fatty acids in the liver [134]. The
common minimal recommended daily intake of n-3 PUFA ranges approximately from 0.35 to 0.40 g
per day (0.5% of total fat) [135]. The American Heart Association guidelines suggests a two-portion
of fatty fish intake per week to prevent hypertriglyceridemia and cardiovascular disease [136]. Yet,
no consensus of the precise amount has been reached. When humans consume EPA and DHA, they
partially replace the n-6 PUFA (particularly AA) in cell membranes, especially those of platelets,
erythrocytes, neutrophils, monocytes, and liver cells [137]. As a result, ingestion of EPA and DHA
from fish or fish oil ameliorates the pro-inflammatory, atherogenic pro-aggregatory and pro-thrombotic
effects caused by n-6 PUFA, which leads to down regulation of pro-inflammatory metabolites such as
prostaglandin E2, thromboxane A2 and leukotriene B4 [100,138,139].

Western diets usually contain higher amounts of n-6 PUFA and lower amounts of n-3 PUFA
(n-6/n-3 PUFA ratio around 15:1). Current evidence suggests that it is imperative to maintain an optimal
n-6/n-3 PUFA ratio [140–142], since this not only plays a role in the pathogenesis of CVD, but also has
an impact on cancer, inflammatory and autoimmune diseases [140]. A suggested ratio of n-6/n-3 PUFA
is 3-4:1 to maintain a pro-inflammatory/anti-inflammatory equilibrium in the organism [143,144]. The
increase in the n-6/n-3 PUFA ratio can also exacerbate the risk of obesity and NAFLD [145–147].

EPA and DHA have been demonstrated to serve as substrates for the formation of a novel series of
specialized pro-resolving lipid mediators (SPMs). These SPMs include: EPA derived E-series Resolvins
(RvE-1), DHA derived D-series Resolvins (RvD1-6), protectins (NPD1, PDX) and Maresin (MaR1-2) [148].
Studies have demonstrated their potent anti-inflammatory and pro-resolutive properties acting at doses
much lower than their n-3 PUFA precursors [108]. Liver inflammation can be resolved by a shift to M2
macrophages, and these SPMs can act as ‘stop signals’ of the inflammatory response and promote liver
regeneration [149]. In this way, several studies in obese mice with IR and liver steatosis have found
that treatment with some of these SPMs including RvE1, RvD1, 17-HDHA and Maresin 1 decrease
adipose tissue and liver inflammation and significantly improve IR and reduce liver steatosis [150–154].
Moreover, n-3 PUFA supplementation from marine sources to obese mice promotes the synthesis of
n-3 PUFA-derived SPMs in liver and adipose tissue, ameliorating tissue inflammation and peripheral
inflammation and IR [155–157]. Interestingly, a clinical trial conducted in humans has shown that
short-term n-3 PUFA supplementation for 5 days results in concentrations of SPMs that are biologically
active in healthy humans [153]. Other trials in severely obese subjects have demonstrated that the
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production of anti-inflammatory-pro-resolving lipid mediators in adipose tissue is enhanced after n-3
PUFA treatment [158]. All these findings suggest that the beneficial metabolic effects attributed to n-3
PUFA can be partly mediated by the production of these SPMs in key metabolic tissue such as liver
and adipose tissue.

3.2. n-3 PUFA and Oxidative Stress

To perform a review about the effects of n-3 PUFA supplementation on oxidative-stress biomarkers
in adults, potentially relevant studies were retrieved by a systematic search in the PubMed database. The
search was performed using the terms “n-3 PUFA and oxidative stress”. Around 1525 non-duplicated
entries were found. Titles and abstracts were reviewed for the first selection, and full texts were
checked only when abstracts itself were not able to reveal the nature of the studies. The filters applied
were clinical trial, free full text, human, adults with cardiometabolic disorders, chronic inflammatory
diseases, or healthy adults. Twenty-seven studies were included after two selections (Figure 2).
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Table 2 summarizes the characteristics of the trials (population, design, intervention) and the
main outcomes observed in biomarkers of oxidative stress after n-3 PUFA supplementation in adults.

The studies described in Table 2 include different populations as healthy and overweight/obese
adults, patients of both genders with cardiometabolic disorders, metabolic syndrome, T2DM,
dyslipidemia, hypertriglyceridemia, with a wide age range. Moreover, doses and supplementation
periods as well as the oxidative-stress biomarkers assessed (including urine F2-isoprostanes, 4-HHE
and 4-HNE, oxidized LDL, plasma α-tocopherol, and enzymatic activity of Glutathione reductase
(GR), Glutathione peroxidase (GPx), and Catalase (CAT) vary from study to study. Regarding the
main outcomes, several studies showed a lowering effect on oxidative stress and lipid peroxidation
biomarkers with EPA or DHA supplementation [159–169]. However, other studies showed increased
levels of oxidative stress or lipid peroxidation biomarkers [170–175] or no changes [176–183]. Other
studies have observed divergent effects of n-3 PUFA supplementation on different oxidative-stress
biomarkers [184,185].
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Table 2. Effects of n-3 PUFA supplementation in oxidative stress in healthy subjects or in population with cardiometabolic disorders.

Reference Study Design Population Intervention Outcome
Measurements Comments

Meydani et al., 1991 [170]
Randomized

intervention before
and after comparison

Young females, aged 51–71; n = 14. Old
females, aged 51–71. n = 9 1680 mg EPA + 720 mg DHA per day for 3 months Plasma MDA level ↑Plasma MDA level

Harats et al., 1991 [171] Randomized parallel
clinical trial

Study A: Smokers:
Control: BMI: 23.5 ± 1.2, age: 42.6, n = 5

Fish oil: 23.8 ± 0.8, age: 37.4, n = 6
Study B: Smokers

Control: BMI: 24.5 ± 1.2, age: 31, n = 3
Fish oil: BMI: 25.0 ± 1.3, age: 29.1, n = 3

Fish oil + VitE: BMI: 23.5 ± 1.2, age: 35.2, n = 4
Study C: Non-smokers, normolipidemic:

Control: BMI: 23.7, age: 36.8, n = 8
Fish oil: BMI: 24.7 ± 1.3, age: 41, n = 6

Fish oil + VitE: BMI: 24.5 ± 1.9, age: 38.8, n = 6

Study A: Fish oil: concentrate (MaxEPA), 10 g/d for
4 weeks.

Study B and C,
Fish oil: (MaxEPA), 10 g/d for 4 weeks

Fish oil (10 g/day) + Vit E (400 mg/d) for 4 weeks

Plasma and LDL
TBARS level

10 g/d of fish oil
consumption

↑plasma LDL TBARS
level in smokers and

non-smokers
Vitamin E

counteracted the effect
of fish oil more

effectively in
non-smokers

Nenseter et al., 1992 [176]
Randomized

placebo-controlled
parallel clinical trial

Normolipidemic subjects
Treatment: women and men, BMI not

reported, age: 27–63, n = 12
Control: women and men, BMI not reported,

age: 23–70, n = 11

Treatment: 6 g capsules/d of n-3 PUFA (highly
concentrated ethyl esters).

Control: 6 g of corn oil
Duration: 4 months

Susceptibility of LDL
to Lipid peroxides

formation

↔ Lipid peroxides
formation

Frankel et al., 1994 [177]
Randomized,

double-blind, clinical
trial

Hypertriglycemic men and women, age, BMI,
smoking status not reported. n = 9/group

Control group: fish oil absent from the diet.
Supplemented group: 5.1 g of fish oil per day for 6

weeks

LDL oxidative
susceptibility

↔ LDL oxidative
susceptibility

Brude et al., 1997 [178]

Randomized,
double-blind,

placebo-controlled
parallel clinical trial

Male smokers, hyperlipidemia, aged 40–60,
BMI not mentioned.

n-3 PUFA capsule group (n = 11), antioxidant
group (n = 11), n-3 PUFAS + antioxidants
group (n = 11), control oil group (n = 9)

n-3 PUFAS group: 5 g DHA and EPA/d
Antioxidants capsule, 75 mg Vit E, 150 mg Vit C, 15
mg β-carotene, and 30 mg coenzyme Q10 per day

Control group: 8 g of oil with an FA pattern similar
to an ordinary Norwegian diet

Lasted for 6 weeks

LDL oxidative
susceptibility, lipid

peroxides

↔ LDL oxidative
susceptibility,
↔ lipid peroxides

Mori et al., 1999 [159]
Randomized,

controlled parallel
study

49 untrained and sedentary NIDDM patients.
Age: 30–65 y.

BMI < 36 kg/m2

Study 1:
Group 1: Low-fat diet (30% of daily energy) (n = 14)
Group 2: Low-fat diet + one daily fish meal (3.6 g

n-3 PUFA/day) (n = 12)
Group 3: Low-fat diet + Moderate exercise (n = 11)

Group 4: Low-fat diet + Fish meal + moderate
exercise (n = 12)

for 8 weeks.

Urine F2- isoprostanes Urine F2- isoprostanes

Higdon et al., 2000 [160] Randomized blinded,
crossover study

Post-menopausal women, aged between 50–75,
BMI < 30 kg/m2, non-smokers, n = 15

Fish oil group: 15 g/d (2.0 g EPA/d and 1.4 g DHA/d)
Safflower oil group: 15g/d (10.5 g linoleate/d);

Sunflower oil: 15g/d (12.3 g oleate/d) in a
3-treatment crossover trial (5 weeks with a 7-wk

washout interval)

Plasma
F2-isoprostanes, MDA,

and TBARS

In fish oil group:
↓plasma

F2-isoprostanes
↓MDA
↑TBARS
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Table 2. Cont.

Reference Study Design Population Intervention Outcome
Measurements Comments

Wander and Du, 2000 [172] Randomized
crossover study

Post-menopausal women, aged 45–75, BMI <
30 kg/m2, smoking status not reported. n = 46

Group 1: fish oil (2.5 g EPA and 1.8 g DHA)
Group 2: fish oil (2.5 g EPA and 1.8 g DHA) + 100

mg α-tocopheryl acetate
Group 3: fish oil (2.5 g EPA and 1.8 g DHA) + 200

mg α-tocopheryl acetate
Group 4: fish oil (2.5 g EPA and 1.8 g DHA) + 400

mg α-tocopheryl acetate
for 5 weeks (4-period crossover design)

TBARS, protein
oxidation

↑TBARS. Protein
oxidation not changed

Mori et al., 2000 [162]
Randomized,

placebo-controlled
parallel study

Overweight, mildly hyperlipidemic men, age:
20–65 y, BMI: 25–30 kg/m2

Group 1: 4 g/d of purified EPA (n = 19)
Group 2: 4 g/d of purified DHA (n = 17)

Group 3: 4 g/d of olive oil (n = 20) for 6 weeks
Urine F2- isoprostanes

↓Urine F2-
isoprostanes in the

EPA, DHA treatment
groups

Wu et al., 2006 [179]

Randomized,
single-blind,

placebo-controlled
parallel clinical trial

Post-menopausal vegetarian women, aged <60.
Corn oil: n = 13

DHA: n = 14

Corn oil group: 6 g corn oil/day
DHA-rich algae oil group: 2.14 g of DHA/day

for 6 weeks

Plasma α-tocopherol,
urine F2-isoprostanes

↔Plasma
α-tocopherol, urine

F2-isoprostanes

Egert et al., 2007 [173] Randomized parallel
controlled study

Healthy men and women, aged: 25.9 ± 6.82;
BMI: 22.2 ± 2.95, non-smokers. n = 48

ALA group: Rapeseed oil +1% of energy of ALA (n
= 15)

EPA group: Rapeseed oil + 1% of energy of EPA (n
= 17)

DHA group: Rapeseed oil + 1% of energy of DHA
(n = 16)

Ex vivo LDL oxidative
susceptibility

EPA and DHA group:
↑ ex vivo LDL

oxidative
susceptibility

Cazzola et al., 2007 [163]
Randomized parallel
placebo-controlled

intervention

Healthy young men (age: 14–42 y, BMI: 24.1 ±
0.3). n = 93

Healthy old men (age: 53-70 y. BMI: 27.6 ± 0.0).
n = 62

4 young and 4 older groups:
1: 1.35 g EPA + 0.27 g DHA per day;
2: 2.7 g EPA + 0.54 g DHA per day;

3: 4.05 g EPA + 0.81 g DHA per day;
4: corn oil group

Lasted for 12 weeks

Plasma lipid
hydroperoxides

Lag time of
lipoprotein

peroxidation

↓Plasma lipid
hydroperoxides
↓Lag time of
lipoprotein

peroxidation and
↓GSH/Gluthatione in

olders

Hanwell et al., 2009 [180]

Randomized,
double-blind,

placebo-controlled
crossover clinical trial

Hyper-triglyceridemic, overweight, and obese
men; aged > 45, smoking status not reported.

n = 10 in total

High-fat, high-fructose meal in all groups:
Fish oil group: 7 g of fish oil concentrate (2.8 g EPA

and 1.4 g DHA)
Isoflavone group: 336 mg NovaSoy (150 mg

glycoside isoflavones).
Fish oil + isoflavone: 7 g fish oil + 336 mg NovaSoy

Placebo group: 7 g corn oil
Consumed 4 days separated by 1week wash out.

Lipid peroxides,
oxidized LDL,

total antioxidant
status

↔ Lipid peroxides,
↔ oxidized LDL,
↔ total antioxidant

status
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Table 2. Cont.

Reference Study Design Population Intervention Outcome
Measurements Comments

Bloomer et al., 2009 [174]
Randomized,
double-blind

crossover study

Subjects are exercise trained man,
non-smokers, no history of cardiometabolic

diseases.
Age: 25.5 ± 4.8 y. BMI: 24.1 ± 1.6

n = 14

Intervention group: 2.224 g EPA and 2.208 g DHA
per day

Control group: same quantity of soybean oil
Duration: 6 weeks (with 8-week washout)

Supplementation were prior to performing a 60 min
treadmill climb using a weighted pack

Blood was collected
pre and post exercise

and analyzed for a
variety of oxidative

stress (Protein
carbonyls,

IgG-autoantibodies,
low-density
lipoprotein,

Malondialdehyde,
Hydrogen peroxide

and xanthine oxidase
activity, Nitric oxide,
Whole blood lactate
and inflammatory

biomarkers

Resting levels:
↓ CRP, ↓TNF- α,↔

MDA,
↔ Nitric oxide.

Exercise:
↑ oxidative

biomarkers (mild)

Mas et al., 2010 [164]
Randomized,

Placebo-controlled
intervention

Study A: placebo-controlled intervention (BMI:
25–30), dyslipidemic men, age: 20–54 y, n =

17–20 per group.
Study B: hypertensive type 2 diabetic and

post-menopausal women, age: 40–75 y, n =
16–18

In both studies,
n-3 PUFA group: 4 g/day of EPA or DHA

Control group: Olive oil placebo
lasted for 6 weeks

Plasma
F2-isoprostanes

↓ Plasma
F2-isoprostanes with

n-3 PUFAS
supplementation

Petersson et al., 2010 [181] Randomized parallel
study

Participants with metabolic syndrome, age:
35–70 y, BMI: 20–40 kg/m2, smokers or

non-smokers.
Saturated high-fat diet: n = 100

Monosaturated high-fat diet: n = 111
Low-fat diets with n-3 PUFA: n = 100

Low-fat diets with sunflower oil: n = 106

Saturated high-fat diet (38% E fat): (HSFA: 16% SFA,
12% MUFA and 6% PUFA),

Monosaturated high-fat diet (38% E fat): (HMUFA:
8% SFA, 20% MUFA and 6% PUFA)

Low-fat (28% E) high-complex carbohydrate diets
(LFHCC: 8% SFA, 11% MUFA and 6% PUFA) with

1.24 g/d n-3 PUFA
Low-fat (28% E)-high-complex carbohydrate diets
(LFHCC: 8% SFA, 11% MUFA and 6% PUFA) with

1g/d high-oleic acid sunflower oil
For 12 weeks

Urinary levels of
8-iso-PGF2α and

15-keto-dihydro-PGF2α
Serum CRP

↔ 8-iso-PGF2α
↔

15-keto-dihydro-PGF2α
↔ Serum CRP

Ulven et al., 2011 [182] Randomized parallel
study

Participants with normal or slightly elevated
total blood cholesterol and/or triglyceride

levels, age: 30–50 y, BMI > 30 kg/m2

Krill oil group: 3 g/day (EPA + DHA= 543 mg/day)
in 6 capsules (n = 36)

Fish oil group: 1.8 g/day (EPA + DHA= 864 mg/day)
in 3 capsules (n = 40)

Control group: no supplementation (n = 37)
Duration: 7 weeks

Urine F2-isoprostanes,
plasma α-tocopherol

↔ Urine
F2-isoprostanes,
↔ plasma
α-tocopherol

Egert et al., 2012 [184] Randomized
single-blind parallel

Men and premenopausal women; Age: 19–43
y; BMI < 28 kg/m2, non-smokers

Margarines fortified with 10% weight of EPA, DHA,
or ALA

EPA group: 2.2 g/day (n = 25).
DHA group: 2.3 g/day (n = 25)
ALA group: 4.4 g/day (n = 24)

For 6 weeks

Antioxidant capacity,
plasma MDA,

RBC-MDA, linoleic
acid hydroperoxides
(LA-OOH) in RBC

↔ Antioxidant
capacity

↑Plasma MDA in EPA
and DHA groups.
↔ RBC-MDA
↓ RBC-LA-OOH
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Reference Study Design Population Intervention Outcome
Measurements Comments

Kirkhus et al., 2012 [185] Open, randomized
parallel study

159 healthy men and women. Age: 18–70 y,
BMI < 30 kg/m2, moderate smokers

1g/day of EPA + DHA as:
- fish pâté (34 g). n = 44

- n-3 PUFA-enriched fruit juice (500 mL). n = 38
- 3 capsuled of fish oil. n = 40

- Control: non-supplemented. n = 37
Duration: 7weeks

Urine F2-isoprostanes
and plasma
α-tocopherol

↓Plasma α-tocopherol
in fish pâté group

when calculated in
relation to the level of

serum TG
↔ F2-isoprostanes

Ottestad et al., 2012 [183]

Randomized,
double-blind,

placebo-controlled
parallel study

54 Healthy men and women, age: 18–50 y, BMI
< 30 kg/m2, non-smokers

Group 1: 8 g/d of fish oil (EPA/DHA) n = 17
Group 2: 8 g/d of oxidized fish oil (EPA/DHA) n = 18

Group 3: 8 g/d of high-oleic sunflower oil n = 19
For 7 weeks

Urine F2-isoprostanes
and plasma oxidation

products from n-3
PUFA and n-6 PUFA
oxidation 4-HHE and

4-HNE; plasma
α-tocopherol,

enzymatic activity of
GR, GPx, and CAT

↔ Urine
F2-isoprostanes and
↔ plasma oxidation
products from n-3

PUFA and n-6 PUFA
oxidation

↔ 4-HHE and↔
4-HNE;
↔ plasma
α-tocopherol,

↔ enzymatic activity
of GR, GPx, and CAT

Schimidt et al., 2012 [165]
Randomized,

controlled, parallel
intervention

10 normo and 10 dyslipidemic men; Age:
29–51, BMI: 35 kg/m2. n = 20

6 Fish oil capsules, providing 1.14 g DHA and 1.56 g
EPA per day, for 12 weeks

GST, GR, and
antioxidative enzymes

SOD3, CAT, and
HMOX2 expression in

whole blood cells,
GPx, MMPs,

cyrochrome P450
(CYP) enzymes

expression in whole
blood

↑GST, ↑GR and
antioxidative enzymes
↑SOD3, ↑CAT and

HMOX2 expression,
↓GPx,

↓MMPs, ↓cytochrome
P450 (CYP) enzymes

expression

Kiecolt-Glaser et al., 2013
[166]

Randomized,
double-blind,

controlled parallel
trial

Healthy sedentary overweight middle-aged
and older adults

Age: 48–85 y, BMI: 22.5–40 kg/m2.
Non-smokers

Group 1: 2.5 g/day n-3 PUFA (n = 35),
Group 2: l.25 g/day n-3 PUFA (n = 40)

Group 3: placebo capsules that mirrored the
proportions of fatty acids in the typical American

diet (n = 31)
Duration: 4 months

Plasma
F2-isoprostanes

↓Plasma
F2-isoprostanes with

n-3 PUFAS
supplementation

Haijianfar et al., 2013 [167]

Randomized
double-blind

placebo-controlled
clinical trial

Type 2 diabetic women. Age: 45–65 y
BMI: 27.7 ± 3.4 (n-3 PUFA group).

BMI: 28 ± 3.8. (Control group)

n-3 PUFA group: 2000 mg/d in 2 capsules: each
contained 1,000 mg n-3PUFA (65% EPA, 360 mg and

35% DHA, 240 mg) (n = 37)
Control group: 2 placebo capsules, each contains 1 g

of cornstarch (n = 34)
Duration: 8 weeks

Serum antioxidant
capacity

↑Antioxidant capacity
in the n-3 PUFA

supplemented group
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Measurements Comments

Véricel et al. 2015 [168]

Randomized,
double-blind,

placebo-controlled,
two-period crossover

trial

Post-menopausal women with type 2 diabetes,
age: 59.8 ± 4.7 y, BMI: 34.1 ± 5 kg/m2. n = 11

Intervention: 400 mg/day of DHA (in 2 capsules/d)
Control: 2 placebo (same amount of sunflower oil)

Duration: 2 weeks

Plasma and platelet
vitamin E, alpha- and

gamma-tocopherol
concentrations,
plasma MDA,
8-iso-PGF2α

↑ Platelet
alpha-tocopherol,

gamma-tocopherol
tend to increase.
↓MDA,

↓8-iso-PGF2α.
n-3 PUFAS

supplementation
↓ oxidative stress
associated with

diabetes

Alves Luzia et al. (2015)
[175]

Randomized,
double-blind,

placebo-controlled
trial

Women (40 to 70 years) with low habitual fatty
fish and seafood intake, who met at least two
of the following criteria: total cholesterol > 200

mg/dL, LDL-C > 140 mg/dL, HDL-C < 50
mg/dL, and triglycerides >150 mg/dL

The fish oil group: daily consumption of 1 g n-3
PUFA (540 mg EPA + 360 mg DHA) and 1 capsule of

placebo (n = 22)
Fish+VitE group: 1 g n-3 PUFA, 400 mg vitamin E/

alpha-tocopherol (n = 19).
Placebo group: 2 capsules/d mineral oil (n = 18)

Duration: 3 months

Biomarkers of
oxidative stress at
baseline, 45 and 90

days

↑ TBARS in the group
supplemented with

fish oil alone, but not
in the fish oil +

vitamin E group

Berge et al., (2015) [169]
Randomized, clinical
interventional pilot

study

Healthy female and male, mean age: 23 ± 4 y.
BMI: 20.9 kg/m2, n=17

17 subjects received dietary supplementation with
krill oil (832.5 mg EPA and DHA per day) for 28

days

Plasma total
antioxidant capacity

(AOC)

↑AOC after krill oil
intake. AOC

positively correlated
with plasma EPA
concentration and

RBC EPA
concentration

Fayh et al., 2018 [161]

Randomized,
double-blind,

placebo-controlled
trial

Male and female with T2DM, Age: 50–57 y.
Mean BMI: 28.2 kg/m2 in n-3 PUFAS group

and 28.8 kg/m2 in control group. n = 15/group

Control group: 3 capsules/day that contains 500 mg
gelatin

Intervention group: 3 capsules/d (each capsule
contains 180 mg EPA, 120 mg DHA, 2 mg Vit E)

For 8 weeks
At the beginning and at the end of protocol, an acute

exercise was performed (treadmill)

TBARS; Plasma
F2-isoprostanes, TRAP,
SOD activity, hs-CRP

n-3 PUFA
supplementation:
↓ TG, ↓TRAP levels

after exercise, without
a significant effect on

inflammatory and
oxidative-stress

markers

Abbreviations: NAFLD, non-alcoholic fatty liver disease; AST, aspartate transaminase; ALT, alanine transaminase; GGT, gamma-glutamyl transpeptidase; ↑, increased; ↓, decreased;↔, not
changed; TG, triglycerides; US, ultrasonography; DPI, doppler perfusion index; TNF-alpha, tumor necrosis factor-alpha; HOMA-IR, homeostasis model assessment-estimated IR; HDL,
high density lipoprotein; FBG, fasting blood glucose; NS, not significant; CRP, C-reactive protein; MDA, malondialdehyde; EPA-E, ethyl-eicosapentanoic acid; MRI, magnetic resonance
imaging; NAS, NASH activity score; ApoB, apolipoprotein B, FGF21, fibroblast growth factor 21; PGE2, prostaglandin E2; Hb1C, Hemoglobin A1c.
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In addition to quantifying the oxidative stress produced by free radicals, several molecules
including lipids, DNA and proteins were considered as the main biomarkers since they could be
modified by excessive ROS in the microenvironment [186]. Most of the 27 studies above measured
the lipid oxidation and its products since they were considered as the widely used biomarker of
oxidative stress.

F2-isoprostane is a chemically stable prostaglandin-like isomer generated by the reaction
of polyunsaturated fatty acids in membrane phospholipids and free radicals or ROS [187–190].
F2-isoprostane has been considered as a gold standard lipid peroxidation marker and was
identified as an excellent and sensitive biomarker of in vivo lipid peroxidative damage. Indeed,
F2-isoprostanes have been found to be elevated in syndromes putatively associated with oxidative
stress and aging such as type 2 diabetes, Alzheimer’s disease and NAFLD [13–15]. After n-3 PUFA
supplementation, several clinical trials have reported decreased urine and/or plasma F2-isoprostane
levels in humans [159,160,162,164,166,168]. However, other trials have found no effects on
F2-isoprostanes [179,181–183,185]. Most of the trials have been performed using n-3 PUFA preparations
that contain both EPA and DHA. A few trials performed comparative studies on the effects of EPA
and DHA themselves. In this context, Mori et al. [162] demonstrated that both purified EPA and
DHA equally reduced urine F2-isoprostanes, suggesting that at least in the short term, the inclusion
of regular fish meals providing n-3 PUFA or the supplementation with purified EPA and DHA, can
reduce in vivo oxidative stress in humans. Similar outcomes were found in a trial with overweight
subjects, mildly hyperlipidemic men, treated with purified EPA or DHA for 6 weeks [164].

Oxidized LDL (oxLDL) levels have been also used as biomarkers of oxidative stress since,
low-density lipoproteins can undergo oxidative modification. Regarding the effects of n-3 PUFA
supplementation on the oxLDL as an oxidative-stress biomarker, some of them found no significant
changes [176–178,180], while others revealed that oxLDL susceptibility increased [171,173]. It should
be mentioned that the use of oxidized LDL as a biomarker of oxidative stress has been criticized and
that the inconsistency of the results obtained in the different trials may be due to the heterogeneity of
oxidation products, the low specificity of the antibodies and the different results obtained depending
on the assay used [191–193].

Malondialdehyde (MDA) is an end-product of lipid peroxidation of polyunsaturated fatty acids
including AA. Circulating MDA is one of the most commonly and widely used biomarkers of oxidative
stress [194]. As reported for other oxidative-stress biomarkers, the role of n-3 PUFA supplementation on
MDA plasma levels remains unclear. Thus, some trials observed that after n-3 PUFA supplementation,
MDA plasma levels decreased [160,168]. Other studies demonstrated increased levels of MDA in
plasma [170,172,173,175,184]. Various analytical methods have been used to measure MDA in biological
samples. The most common is the Thiobarbituric acid reactive substances (TBARS) method [195]. In a
study conducted by Higdon et al. [160], MDA level decreased while TBARS level increased. In this
regard, TBARS lacks specificity, as many chemically reactive carbonyl groups-containing compounds
from different classes of substances including oxidized polyunsaturated fatty acids and carbohydrates,
from endogenous sources and foods present in body fluids, can react with TBA. Therefore, it should be
taken into consideration that results might vary between studies carried out by TBARS or other more
specific techniques for the measurement of MDA [195].

At the clinical level, other biomarkers of oxidative stress analyzed were those related to antioxidant
defenses such as CAT, GR, GPx and Heme oxygenase 2 (HMOX2) enzymes [123], plasma GSH and
α-tocopherol levels, and total antioxidant capacity [167,179,182,183]. A few studies evaluated the effects
of n-3 PUFA on these biomarkers and although some of these showed improved antioxidant defenses
levels or total antioxidant capacity [165,167,169], others described neutral effects [179,180,182,183].

The mechanism by which oxidative stress could be reduced following n-3 PUFA supplementation
is still unresolved, but it has been assumed that these effects may occur through immunomodulation and
a decreased leukocyte activation [196]. In this sense, it is known that activated immune cells produce
cytokines (i.e., TNF-α or IL-6) that consequently promote ROS generation [174,197,198]. Interestingly,
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numerous studies have demonstrated the ability of n-3 PUFA to diminish pro-inflammatory cytokine
production [108]. Moreover, it has been proposed that EPA and DHA are more effective acting as
antioxidants and as superoxide scavengers in an unsaturation-dependent manner, given the high
unsaturation level of n-3 PUFA [109]. Additionally, EPA and DHA can replace AA in cell membranes
decreasing AA concentration [199], which serves as a precursor of F2-isoprostanes.

As a matter of fact, it remains controversial whether n-3 PUFA are effective to counteract oxidative
stress in humans. Indeed, the heterogeneity in population, treatment duration, doses, and methods to
assess oxidative stress in the trials reviewed prevent any definitive conclusion.

3.3. n-3 PUFA Supplementation in NAFLD and NASH Adult Patients

To evaluate the potential beneficial effect of supplementing n-3 PUFA (including DHA and EPA)
in NAFLD and NASH, another systematic review of clinical trials carried out in adults was performed.
Potentially relevant studies were retrieved by a systematic search in the PubMed database. The
following search terms were used: “n-3 PUFA and NAFLD”, “DHA and NAFLD”, “EPA and NAFLD”,
“n-3 PUFA and NASH”, “DHA and NASH”, “EPA and NASH”. Articles were filtered by clinical trials
(article type), full text (availability), 10 years (publication date), and only human trials were included.
Studies which recruited obese adults (>18 years old) with pre-diagnosed NAFLD at different stages and
with liver or blood profile inflammation and oxidative stress related biomarkers were included, as well
as studies in patients with NAFLD or NASH associated with diabetes and hyperlipidemia. Studies
including a specific ethnic population, NAFLD or NASH associated with cardiovascular diseases or
risk factors, polycystic ovary syndrome, and genotypes among others were excluded. Around 1501
non-duplicated entries, with the applied filters of “clinical trials” and “human” were found in the
PubMed database. Titles and abstracts were reviewed for the first selection, and full texts were checked
only when abstracts themselves were not able to reveal the nature of the studies. Finally, 13 clinical
trials were included (Figure 3).
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Figure 3. Flowchart of selection process based on n-3 PUFA and NAFLD/NASH.

Table 3 describes the characteristics (population, design, etc.) of the selected trials as well as the
main findings concerning the effects of n-3 PUFA supplementation in adult patients with NAFLD
and NASH.
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Table 3. Effects of n-3 PUFA supplementation in NAFLD (non-alcoholic fatty liver disease) and NASH (non-alcoholic steatohepatitis) adults.

Reference Study Design Population Intervention Outcome
Measurements Results Comments

Capanni et al.,
2006. [200] Open-label trial

Patients with NAFLD
proven by US; Age range:
31–77 y. Mean BMI: 28.5

kg/m2. n = 56

Oral intake of n-3 PUFA (EPA
and DHA in a 0.9/1.5 ratio), 1
g capsule a day for 12 months.
Intervention group (n = 42)

vs control group (n = 14)

Hematochemical tests;
Liver fat changes

detected by US and
liver eco-texture

measured by Duplex
Doppler US and DPI

follow up

↓ AST, ALT, GGT;
↓ fasting TG and glucose

↓arachidonate
↓n-6/n-3 ratio

Significant beneficial effects
on liver US pattern and ↑ DPI

Long-term n-3 PUFAS
supplementation

ameliorates hepatic
steatosis in NAFLD

patients

Spadaro et al.,
2008. [111]

Randomized
open-label trial

Patients with NAFLD
proven by US; Mean age:

51 y Mean BMI: 30.5
kg/m2

AHA diet + 2 g/d n-3 PUFA
(group DP, n = 20)

AHA diet (Group D, n = 20)
for 6 months

Changes on liver fat
via US; ALT, AST,
GGT, lipid profile,

TNF-α serum levels,
fasting glucose, and

IR by HOMA-IR

Group DP:
↓ ALT, GGT
↓ TG, TNF-α
↓ HOMA-IR

↑ HDL cholesterol
Complete steatosis regression
in 33.4 % of patients and an

overall reduction of 50%.

n-3 PUFA have a major
improvement on fatty liver

in patients with NAFLD

Zhu et al.,
2008. [201]

Randomized
controlled trial

Patients with US proven
NAFLD associated with

hyperlipidemia; Age:
18–65 y

Oral supplementation of n-3
PUFA for 24 weeks.

AHA-based diet with a
caloric restriction of 25-30

kcal/kg per day
Group A (n = 66): 2 g n-3

PUFA from seal oils, 3
times/day. Group B (n = 68) 2

g placebo, three times/day

Primary endpoints:
fatty liver assessed by
symptom scores, ALT
and serum lipid levels

at 8, 12, 16, and 24
weeks.

Secondary endpoints:
liver fat changes by

US at weeks 12 and 24

After 24 wk of treatment:
↔ body weight,↔ FBG;
↓ Total symptom scores,

↓ALT and TG
Complete fatty liver

regression was observed in
19.7% of the patients, and an
overall reduction was found

in 53.0% (35/66) of the
patients in group A

n-3 PUFA from seal oils is
safe and efficacious for
patients with NAFLD

associated with
hyperlipidemia and can

improve their total
symptom scores, ALT,
serum lipid levels, and

normalization of
ultrasonographic evidence

Tanaka et al.,
2008. [202] Pilot Trial 23 biopsy-proven

NASH patients

Highly purified EPA (2700
mg/d) was administered for

12 months

Biochemical
parameters of glucose
and lipid metabolism,

inflammatory and
iron metabolism
oxidative-stress

markers
Ultrasonography

Histologic evaluation
of liver biopsies

↓ ALT, AST
↓Total cholesterol
↓ sTNFR1,2
↓Ferritin

↓ Thioredoxin
↓ hepatic steatosis and

fibrosis, hepatocyte
ballooning, and

lobular inflammation

EPA treatment seems to be
safe and efficacious for

patients with
NASH
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Table 3. Cont.

Reference Study Design Population Intervention Outcome
Measurements Results Comments

Sofi et al.,
2010. [203] Randomized

Patients with NAFLD
proven by US. Age: 30–70
y, mean BMI: 29.3 kg/m2

Food consumption enriched
with n-3 PUFA (0.47 g EPA +
0.24 g DHA) for 12 months.

Group 1: (n = 6) 6.5ml/d
enriched with olive oil +

recommended diet
Group 2: (n = 5) control

(recommended diet + not
enriched olive oil)

Liver eco-texture
measured by Duplex
Doppler US and DPI.
Liver enzymes, TG

and adiponectin
levels

↓ ALT, AST, and GGT
↓TG level

↑HDL cholesterol
↑adiponectin
↑ DPI level

Persistent consumption of
food enriched with n-3

PUFA has favorable effects
in patients with NAFLD

Scorletti et al.,
2014. [204]

WELCOME study:
double-blind,
randomized,

placebo-controlled
trial

Patients with histological
confirmation of NAFLD.
Mean age: 50 years old.
Mean BMI: 32.5 kg/m2

Intervention group (n = 51):
oral supplementation of

purified long-chain n-3 PUFA
ethyl esters (1 g contains 460

mg of EPA and 380 mg of
DHA), 4 g/day.

Placebo group (n = 52):
4 g/day of olive oil. 15 to
18 months of treatment

Liver fat percentage
assessed by MRS and
biomarker scores for

liver fibrosis,
erythrocyte
enrichment

quantification with
DHA+EPA via gas
chromatography

Trend to improve liver fat%
with DHA+EPA

No improvement in liver
fibrosis scores

Association between
erythrocyte DHA
enrichment with

DHA+EPA treatment and a
decrease of liver fat

percentage

Sanyal et al.,
2014. [205]

Double-blind,
randomized,

placebo-controlled
trial

Patients with NASH,
NAFLD activity scores ≥
4, with minimum scores

of 1 for steatosis and
inflammation, along with

either ballooning or at
least stage 1a fibrosis.

n = 243

Subjects were randomly
assigned to groups given

placebo (n = 75), low- dosage
EPA-E (1800 mg/d; n = 82), or

high-dosage EPA-E
(2700 mg/d; n = 86) for

12 months

The primary end
point: NAFLD

activity score ≤3,
without worsening of
fibrosis; or a decrease

in NAFLD activity
score by ≥2 with

contribution from >1
parameter, without

worsening of fibrosis.
Liver enzymes, IR,

adiponectin, keratin
18, hs-CRP, or

hyaluronic acid were
measured as well

No effects of EPA-E on
steatosis, inflammation,

ballooning, or fibrosis scores.
No effects on levels of liver
enzymes, IR, adiponectin,

keratin 18, hs-CRP, or
hyaluronic acid.

High-dosage EPA-E: ↓ levels
of TG

In a phase 2 trial, EPA-E
had no significant effect on

the histologic features of
NASH. EPA-E reduced

subjects’ levels of
triglyceride compared with

placebo, without any
increase in serious adverse

events
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Table 3. Cont.

Reference Study Design Population Intervention Outcome
Measurements Results Comments

Li et al.,
2015. [206]

Randomized
placebo-controlled

trial

Patients diagnosed with
NASH Mean age: 51
years old. Mean BMI:

27.9 kg/m2

Intervention group (n = 39):
50 mL of PUFA with 1:1 Ratio
of EPA and DHA added into

daily diet placebo: saline
(n = 39). Duration of
treatment: 6 months

Liver enzymes, lipid
profile, markers of
inflammation and

oxidation, and
histological changes

by biopsy

Liver function was
significantly improved:

↓ ALT / AST
↓ TG

↓Total Cholesterol
↓ CRP (inflammation)
↓MDA (oxidation)
↓ fibrotic parameters

6 months of n-3 PUFA
therapy is beneficial for

improving NASH

Argo et al.,
2015. [207]

Double-blind,
randomized,

placebo-controlled
trial

Patients 34 subjects with
biopsy-proven NASH;

Mean age: 47 y
Mean BMI: 32.5 kg/m2

Oral supplementation of n-3
PUFA 3000 mg/d (each

1000 mg capsule contains
35% EPA, 25% DHA and 10%
other n-3 PUFA), vs placebo

(soybean oil).
n = 17 per group

1 year of treatment

Liver biopsy,
Abdominal MRI for

quantitative
assessment of hepatic

fat, AST, ALT, total
cholesterol, LDL and
HDL cholesterol, and

TGs. FFAs, insulin,
and glucose levels

No differences for the
primary end point of NASH

activity score (NAS)
reduction.

In n-3 PUFA-treated subjects:
↓in liver fat content by MRI

(among subjects with
increased or stable weight)

Treatment did not exert
beneficial effects towards

hepatic histological
improvement in NASH

patients

Qin et al.,
2015. [208]

A double-blind
randomized

Placebo-controlled
clinical trial

Patients with NAFLD
associated with

hyperlipidemia, Mean
age: 44.3 ± 10.9 and 46.0
± 10.6 y for placebo or

treated group
Mean BMI: 26.0 ± 2.8 and

26.4±3.9 kg/m2,
respectively. n = 70

Randomly assigned to
consume fish oil (n = 36,

4 g/d) or corn oil capsules
(n = 34, 4 g/d) for 3 months

Blood levels of lipids,
glucose and insulin,
liver enzymes, and

cytokines at baseline
and the end of the

study were measured

Fish oil group:
↓ total cholesterol, ↓ TG,
↓apolipoprotein B
↓ glucose,
↓ ALT
↓ GGT

↑ Adiponectin
↓ TNF-α
↓ LTB4,
↓ FGF21,

↓ CK-18/M30 ↓PGE2

These findings suggest that
fish oil can benefit

metabolic abnormalities
associated with NAFLD

Dasarathy et al.,
2015. [209]

Double-blind,
randomized,

placebo-controlled
trial

Patients with NAFLD
and NASH diagnosed by

liver biopsy, Mean age:
50 y. Mean BMI: 35 kg/m2.

n = 37

n-3 PUFA group: oral
supplementation of 2160 mg
of EPA and 1440 mg of DHA.
(n = 19) and Placebo group

(n = 18) using corn oil
supplementation

Duration: 48 months

Primary endpoints:
assess the

improvement of 2
points in the NAFLD
activity score by liver

biopsy.
Secondary endpoints:

changes in liver
enzymes, IR, fasting
glucose, and HbA1C

No differences between
groups in BMI, serum

transaminases, diabetes
control, histological

evaluation of NAFLD activity
score and individual

components

N-3 PUFA supplementation
showed no beneficial

effects in NASH patients
with diabetes
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Table 3. Cont.

Reference Study Design Population Intervention Outcome
Measurements Results Comments

Nogueira et al.,
2016 [210]

Double-blind,
randomized,

placebo-controlled
trial

Men and women with a
proven histological
diagnosis of NASH.

Mean age: 53.9 ± 1.8 and
52.5 ± 7.2 y for placebo

group and n-3 PUFA
group. Mean BMI:

30.3 ± 4.4 and 31.1 ± 4.6,
respectively.

n = 50

n-3 PUFA group: 3 capsules
(0.945 g in total per day, 64%

ALA, 16% EPA, and 21%
DHA). (n = 27)
Placebo group:

3 capsules of mineral oil
(n = 23).

Duration: 6 months

Primary endpoints:
Plasma fatty acids

(ALA, EPA, DHA and
AA), NAS.

Secondary endpoints:
serum TG, AST, ALT,

GGT, fasting
lipid profile, fasting

glucose,
anthropometric

parameters, or plasma
levels of IL-6 at
baseline and at

endpoint,

n-3 PUFA group:
↑plasma ALA and EPA. NAS
correlated with↑plasma ALA.

↓TG
Control group:

↑plasma DHA and EPA, NAS
correlated with↑plasma DHA

and EPA

No significant changes
were observed on liver

histology in the n-3 PUFA
or placebo group

Tobin et al.,
2018 [211]

Double-blind,
randomized,

placebo-controlled
trial

Patients with previously
diagnosed NAFLD

(hepatic steatosis stage).
Mean age; 55.1 ± 10.9 and
55.3 ± 13.3 y for placebo
and n-3 PUFA MF4637

group
Mean BMI; 32.4 ± 5.0 and

32.1±4.8. respectively.
n = 176

n-3 PUFA group: oral
supplementation of 3g

capsule (1380 g of EPA and
1140 g of DHA) (n = 87)

Placebo group: oral
supplementation of 3 g olive

oil capsule (n = 89)
Duration = 24 weeks

n-3 PUFA index, n-6
PUFA: n-3 PUFA
ratio, quantitative

measurements of RBC
EPA and DHA at the

baseline and the
endpoint, liver fat

content measured by
MRI

n-3 PUFA group:
↑n-3 PUFA index and

↑absolute values of RBC EPA
and DHA, ↓RBC n-6: n-3

ratio
↓liver fat content in both

groups

No significant differences
in fat liver were found
between n-3 PUFA and

placebo group

Abbreviations: NAFLD, non-alcoholic fatty liver disease; AST, aspartate transaminase; ALT, alanine transaminase; GGT, gamma-glutamyl transpeptidase; ↑, increased; ↓, decreased;↔, not
changed; TG, triglycerides; Chol: cholesterol; US, ultrasonography; DPI, doppler perfusion index; TNF-α, tumor necrosis factor-alpha; HOMA-IR, homeostasis model assessment-estimated
IR; HDL, high density lipoprotein; FBG, fasting blood glucose; NS, not significant; CRP, C-reactive protein; MDA, malondialdehyde; EPA-E, ethyl-eicosapentanoic acid; MRI, magnetic
resonance imaging; NAS, NASH activity score; ApoB, apolipoprotein B, FGF21, fibroblast growth factor 21; PGE2, prostaglandin E2; HbA1C, Hemoglobin A1c; RBC, red blood cells; MRI,
magnetic resonance imaging.
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In 2006, Capanni et al. [200] carried out the first clinical trial in humans to test the efficacy of
long-term supplementation of n-3 PUFA in NAFLD. This study in patients with NAFLD confirmed
by US showed that oral intake of n-3 PUFA (EPA and DHA in a 0.9/1.5 ratio) did not change BMI,
but significantly decreased serum TG and glucose levels in parallel with a reduction in arachidonate
and n-6/n-3 ratio. Concerning liver function, the study also revealed that the n-3 PUFA group exhibited
lower levels of circulating AST, ALT, and GGT. Moreover, the US and duplex Doppler assays revealed
that n-3 PUFA supplementation significantly improved liver echo-texture with a regression of hepatic
brightness and higher Doppler perfusion index (DPI), which indicates an improvement in liver blood
flow due to intrahepatic fat reduction [200].

The randomized/open-label trial by Spadaro et al. [111] showed similar patterns to the
Capanni et al. study [200]. Patients with proven NAFLD by US followed dietary recommendations
in concordance with the American Heart Association (AHA) guidelines, with a caloric restriction of
25-30 kcal/kg per day for 6 months. The group supplemented with n-3 PUFA (1 g twice a day) showed
decreased circulating levels of TG and increased HDL levels. Moreover, in the n-3 PUFA group, ALT
and GGT serum levels were markedly decreased. A complete steatosis regression was observed in
33.4% of patients, and an overall reduction in 50%, suggesting a beneficial effect of long-term n-3 PUFA
supplementation to reduce fatty liver. n-3 PUFA supplementation also reduced the inflammatory
marker TNF-α and the IR index assessed by HOMA-IR. A correlation between both factors was
observed [212]. Thus, TNF-α can influence insulin receptor phosphorylation, altering its tyrosine
kinase activity and therefore inhibiting insulin receptor-initiated signals in hepatocytes [213]. High
levels of TNF-α can initiate intracellular signaling which may lead to caspase activation and apoptosis
in hepatocytes, casing inflammation and tissue fibrosis [214,215]. Therefore, by reducing TNF-α and
inflammation, n-3 PUFA can protect hepatocytes from these damages [214]. The hyperinsulinemia
condition that often occurs during IR can affect SREBP-1, a lipogenic transcription factor, which
regulates lipid homeostasis by controlling a wide range of enzymes [216], enhancing fatty acid
synthesis and accelerating TG accumulation [217].

Zhu et al. [201] conducted a randomized placebo-controlled trial using seal oil as the source of
n-3 PUFA in patients with NAFLD associated with hyperlipidemia. Liver steatosis was diagnosed
and monitored by US. Oral supplementation of n-3 PUFA (2 g, three times a day) lasted for 24 weeks.
No significant changes were observed in body weight and fasting blood glucose. Interestingly, total
symptom scores, ALT and TG levels were significantly reduced in the intervention as compared with
the placebo group. Moreover, the US revealed that at the end of treatment, 19.70% of the n-3 PUFA
supplemented patients showed a normal liver echopattern and that 53.03% of them had an overall
fatty liver regression. By contrast, in the placebo group only 7.35% of patients achieved complete
regression. Seal oils have a different PUFA composition than fish oils, which have been mainly used in
trials in humans. In fishes, EPA and DHA are positioned in sn-2, while in marine mammals, these
fatty acids are found mainly at the sn-1 and sn-3 positions of triglycerides. This study suggests that
administration of seal oils rich in n-3 PUFA seems to be also efficient in combination with an energy
restricted diet in treating patients with NAFLD associated with hyperlipidemia [201].

Sofi et al. [203] conducted a randomized study in subjects with NAFLD (BMI mean of 29.3 kg/m2),
in which subjects received 6.5 mL/day of olive oil enriched with n-3 PUFA (0.83 g n-3 PUFA, of
which 0.47 g was EPA and 0.24 g was DHA), or the same dose of unenriched olive oil for 12 months.
No specific diet was recommended, but food habits and estimation of nutrients and calorie intake
were recorded; physical activity was also recorded by questionnaires and classified as light or absent,
moderate, or intense. After a year of treatment, no significant BMI differences were found, while
hepatic and lipid parameters were improved in the subjects receiving the n-3 PUFA-enriched olive oil.
Indeed, ALT, AST, and GGT decreased by 40.4%, 35.3% and 27.2% respectively, and serum TG levels
reduced by 19.2%. Contrariwise, a predominant increase of HDL-C and adiponectin by 36.1% and
30.2% was observed in the intervention group. Moreover, the echo-Doppler test revealed an increase
of 26.7% in DPI in the group consuming the n-3 PUFA-enriched olive oil [203].
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The WELCOME study (Wessex Evaluation of fatty Liver and Cardiovascular markers in NAFLD
with OMacor thErapy) evaluated whether the supplementation with highly purified n-3 PUFA could
exert a more beneficial effect on NAFLD [204]. Overweight/obese patients diagnosed with NAFLD
received 4 g/day of placebo (olive oil) or Omacor (1g contains 460 mg of EPA and 380 mg of DHA as
ethyl esters) for 15 to 18 months. Liver fat percentage was evaluated by MRI and liver fibrosis by using
two histological validated scores, which have different sensitivities in assessing grade of severity in
steatosis. Erythrocyte enrichment with EPA+DHA was used to validate the adherence to intervention
in the Omacor group and monitor contamination with DHA and EPA in the placebo group. The study
revealed that n-3 PUFA supplementation did not improve fibrosis scores, while there was a trend to
reduce liver fat in these patients. Regression analysis revealed an independent association between the
reduction in the percentage of liver fat and DHA enrichment [204].

Qin et al. [208] carried out a double-blind placebo-controlled trial in patients with NAFLD
(BMI 26.0), in which subjects received 4 g/day of placebo (corn oil) or fish oil capsules (with a total daily
amount of 728 mg of EPA and 516 mg of DHA) for 3 months. After intervention, the fish oil group
exhibited higher circulating levels of EPA and DHA, while a reduction was found in serum levels of
glucose, TG, total cholesterol, and apolipoprotein B. Fish oil supplementation also reduced markers of
inflammation such as TNF-α, leukotriene B4, and prostaglandin E2, while it increased adiponectin,
an anti-inflammatory adipokine. In this study, the authors, did not carry out US or MRI to estimate
NAFLD, but several circulating markers of NAFLD were evaluated. After treatment, a significant
decrease was induced by fish oil supplementation on ALT, GGT, FGF21, and cytokeratin 18 fragment
M30. Increased levels of FGF21 have been found in patients with NAFLD, which is associated with
chronic inflammation and considered as a result of a FGF21-resistant state [218].

Recently, Tobin et al. [211] conducted a double-blind randomized placebo-controlled study in
subjects with NAFLD to evaluate the efficacy of an n-3 PUFA medical food (omega-3 concentrate
MF4637) provided as 3 capsules of 1 g per day (each capsule containing marine-sourced EPA and
DHA as ethyl esters, 460 mg and 380 mg, respectively) for 24 weeks. The high concentrate omega-3
intake significantly increased the omega-3 index and absolute values of red blood cells (RBC) EPA
and DHA, and decreased the RBC n-6: n-3 PUFA ratio. ALT, AST, and GGT decreased in the placebo
group but not in the group with the omega-3 concentrate. Liver fat content evaluated by magnetic
resonance imaging-proton density fat fraction (MRI-PDFF) significantly decreased in both groups,
but no differences were found between groups.

Li et al. [206] performed a randomized, but not blinded trial in overweight/obese participants
diagnosed with NASH. The intervention group received n-3 PUFA treatment (50 mL of PUFA with 1:1
ratio of EPA and DHA in the daily diet), while the control group received saline solution for 6 months.
Participants were advised to follow a low-fat and low-carbohydrate diet with moderate physical activity
for 30 min for at least 5 times a week. Inflammation and oxidative parameters, C-reactive protein
(CRP), MDA, as well as fibrotic parameters, type IV collagen and Procollagen-III-peptide (P-III-P)
were significantly higher in patients with NASH. After 6 months of intervention with n-3 PUFA, liver
function was generally improved, indicated by a reduction in ALT, AST, TG, total cholesterol, CRP,
MDA, and type IV collagen and P-III-P.

On the other hand, Argo et al. [207] carried out a double-blind, randomized, placebo-controlled
trial in obese subjects diagnosed with NASH in which the intervention group received 3000 mg/day of
n-3 PUFA (each capsule of 1000 mg contained 70% total n-3 PUFA in the form of triglycerides: 35%
of EPA, 25% of DHA and 10% of other n-3 PUFA). Patients were advised to follow a hypocaloric
diet (500-1000 kcal less than estimated for age- and weight-based basal metabolic rate) with less than
30% of fat content and 150 min of aerobic exercise per week. Serum transaminases, lipid profile, IR,
and fasting glucose were determined at the beginning and at the end of the study, liver biopsy and
MRI were applied to evaluate liver fat. Although a decrease in n-6/n-3 PUFA ratio in RBC as well as
in liver fat reduction were noted in n-3 PUFA-treated patients, no significant changes of NASH were
found in any group [207].
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A study by Dasarathy et al. [209] was carried out with a double-blind placebo-controlled trial in
diabetic patients with NASH diagnosed by liver biopsy. Patients received a placebo (corn oil) or n-3
PUFA (2160 mg of EPA and 1440 mg of DHA daily) for 48 weeks. Outcomes revealed no significant
changes in body weight or body composition. Liver steatosis and NAS were improved while lobular
inflammation worsened in the placebo group; however, there was no significant change in any of the
histological measures in the n-3 PUFA group. These outcomes suggest that n-3 PUFA supplementation
did not provide any benefit over the placebo in NASH patients with diabetes. The authors reported
that the effects of n-3 PUFA on histology and IR were inferior to the placebo.

Nogueira et al. [210] carried out a double-blind, placebo-controlled clinical trial in patients with
NASH. The n-3 PUFA supplemented group received a total amount of 0.945 g of n-3 PUFA (64% ALA,
16% EPA, and 21% DHA) for 6 months. Comparison between the final and basal liver histopathologic
scores showed no significant changes between the n-3 PUFA and the placebo groups regarding
hepatocellular ballooning, liver steatosis, or fibrosis. Surprisingly, the lobular inflammation was
improved in the placebo group in parallel with an increase in plasma EPA and DHA levels, suggesting
an off-protocol intake of n-3 PUFAs.

All the previous studies have been carried out with different n-3 PUFA formulations containing
both EPA and DHA. Only two studies have analyzed the effects of purified EPA on NASH patients.

Thus, Tanaka et al. [202] carried out a pilot trial to evaluate the efficacy of highly purified
EPA (2700 mg/day) on 23 biopsy-proven NASH patients for 12 months. No changes were found
in body weight, blood glucose, insulin, or adiponectin. However, circulating levels of ALT were
significantly decreased. Post-treatment liver biopsies were obtained from 7 patients, and improved
hepatic steatosis and fibrosis, hepatocyte ballooning, and lobular inflammation were found in 6 patients.
These findings suggest that highly purified EPA treatment could be efficient for NASH treatment,
probably due to its anti-inflammatory and antioxidant properties. To better characterize this finding,
Sanyal et al. [205] carried out a multicenter, prospective, double-blind, randomized, placebo-controlled
trial with EPA-Ethyl ester (1800 mg/day or 2700 mg/day) for 12 months in 243 patients with diagnosed
NASH. The highest dose of EPA reduced the circulating levels of TG, but no significant changes on liver
enzymes, IR, adiponectin, keratin 18, CRP, or hyaluronic acid were found after EPA supplementation.
Moreover, EPA did not have any relevant effect on histologic features of NASH.

From the eight trials analyzing effects of n-3 PUFA on NAFLD patients, five suggested beneficial
effects on some biomarkers of liver steatosis such as a decrease of ALT, AST or GGT, or a reduction of fat
liver percentage or biomarkers of metabolic abnormalities associated with NAFLD [111,200,201,203,208].
However, the range of doses used in the studies, the type of formulation of n-3 PUFA (fish oil, seal oil,
olive oil enriched with n-3 PUFA), the ratio EPA/DHA, if they are in the form of TG or ethyl esters, etc.),
as well as the duration of the trials (3 to 12 months) were widely different among the trials. Therefore,
it is difficult to provide a concluding recommendation about the most effective dose and duration of the
trial. Moreover, two trials using higher doses of EPA and DHA (> 3 g/day) during a longer period of
time (15 to 48 months) did not find any significant changes on serum transaminases or NAFLD activity
scores [204,209]. In the same way, a recent trial testing the effects of 3 g of a high concentrate omega-3
medical food (1.38 g EPA and 1.14 DHA) has not found significant differences with the placebo group
in NAFLD patients [211]. The inconsistent outcomes of the different trials may be also related with
the heterogeneity of participants within the spectrum of NAFLD (lean, overweight, or obese, with
or without other metabolic complications such as type 2 diabetes or severe dyslipidemia, as well as
the severity of the liver steatosis). Trials also differ in the methodology to evaluate the degree of liver
disease in NAFLD and NASH patients.

Six studies have analyzed the potential beneficial effects of n-3 PUFA supplementation on
NASH diagnosed patients. Two studies suggested that n-3 PUFA supplementation could be useful
for improving NASH [202,206]. However, these studies have some limitations. In one of them,
the intervention group received 50 mL of PUFA/day with a ratio 1:1 of EPA:DHA added into the diet,
but the composition of the PUFA preparation and the exact amount of EPA and DHA received daily by
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the patients was not indicated. Moreover, the control group received saline and no other oil with similar
calorie supply. Patients of both groups reduced their BMI after the intervention, probably in response to
the dietary recommendations and modest physical activity. The decrease in BMI tended to be higher in
the PUFA group, and therefore the beneficial effects observed could be secondary to a higher reduction
of body weight or fat mass, which was not considered in the interpretation of the data [206]. The other
study was a pilot trial without a placebo group, which suggested that the administration of highly
purified EPA can improve NASH features [202]. However, a further double-blind placebo-controlled
trial providing the same dose of highly purified EPA (2700 mg/day) also for 12 months did not find
any significant change in steatosis or fibrosis in NASH patients [205]. Similarly, two double-blind
placebo-controlled trials using high doses of n-3 PUFA (≥3000 mg/day) for 12 to 48 months did not
observe any significant improvement on the histological features of NASH [207,209]. In the same
way, Nogueira et al. [210] described that the supplementation with n-3 PUFAs from a flaxseed/fish
oil mixture did not improve liver histology in NASH patients when compared to placebo. Therefore,
the effectiveness of n-3 PUFA to attenuate severe NAFLD or NASH markers including liver fibrosis or
inflammation is still unclear.

Some studies support differential effects for EPA and DHA [219]. Thus, trials in children and
adolescent have suggested that DHA was more effective in reducing liver fat and markers of liver
fibrosis [220,221]. Moreover, the study of Scorletti et al. [204] found an independent association
between reduced liver fat percentage and erythrocyte DHA enrichment (but not with erythrocyte EPA
enrichment). However, there are no trials in adults evaluating the efficacy of highly purified DHA in
patients with NAFLD/NASH.

In conclusion, the trials performed to date suggest that n-3 PUFA supplementation maybe effective
in the early stages of NAFLD, but not in patients with more severe NAFLD or NASH. Further
randomized controlled trials are needed to evaluate the efficacy of DHA on these conditions. Also, it is
important to better characterize if the n-3 PUFA supplementation is more effective when combined
with a calorie restricted diet or exercise.

4. Conclusions and Future Perspectives

Oxidative stress has been related with the development of several age-related conditions including
cardiovascular and neurodegenerative diseases, and plays a key role in combination with inflammation
and lipotoxicity in the progression of NAFLD to NASH. The outcomes derived from the different trials
addressing the potential usefulness of n-3 PUFA supplementation to attenuate oxidative stress are
controversial (with beneficial, neutral, or even negative actions depending on the oxidative-stress
biomarker measured). Those articles that observed a beneficial effect on oxidative stress suggested that
the effect could be related to the immuno-modulatory and anti-inflammatory properties of n-3 PUFA
and to their ability to increase antioxidant enzymes, which could contribute to reduce the generation
of ROS and other oxidative stress agents. However, the heterogeneity in population participating in
the randomized trials, the differences in treatment duration, doses, as well as in methods to assess
oxidative stress make difficult to conclude about the effectiveness of n-3 PUFA to reduce oxidative
stress during aging.

Concerning NAFLD, the systematic review of randomized controlled trials strongly suggests that
n-3 PUFA supplementation may be an effective option to decrease liver fat and circulating enzymes
related to liver injury in adult patients with NAFLD. However, the effectiveness of n-3 PUFA to
attenuate more severe NAFLD or NASH markers including liver fibrosis is still inconclusive. Therefore,
it is difficult to provide a recommendation about the proper doses and formulas (EPA vs DHA or
EPA/DHA ratio) to attenuate the progression or to reduce NAFLD/NASH. Large-scale, well-designed
randomized controlled trials are needed to better characterize the efficacy of n-3 PUFA for oxidative
stress and NAFLD/NASH treatment in adults. Future research should also focus on analyzing the
differences in bioavailability and effects of different formulations of n-3 PUFA, including re-esterified
TG, ethyl ester, carboxylic acids, and phospholipids.
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Another important issue is the evidence about the heterogeneity in the response to n-3 PUFA
supplementation within-population. Genetic background may clearly influence this differential
responsiveness. For example, PNPLA3 rs738409 underlies the response to a variety of treatments in
NAFLD [222]. Consequently, future efforts should be paid to the identification of genetic/epigenetic
signatures involved in the response to treatments to warrant a personalized, precise medicine in NAFLD.

Metabolomics and lipidomics studies are also needed to better understand the alterations in the
metabolome that occur during aging-related pathologies, including NAFLD, as well as the changes in
the metalolomic/lipidomic signatures induced by n-3 PUFA, which could contribute to explain the
beneficial actions of these fatty acids through the production of SPMs or other metabolites. In this
way a recent study using a proteomic approach in liver biopsias and lipidomic analysis of plasma has
found that n-3 PUFA supplementation improve markers of lipogenesis, ER stress and mitochondrial
function in patients with NASH [223].

Trials should also consider analyzing gut microbiota changes during the aging process as well as
their modulation by dietary factors including n-3 PUFA and to characterize the mechanisms linking the
relationship between the modifications of gut microbiota composition and the evolution of oxidative
stress and liver pathology.
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